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Abstract: This work is part of the effort to build statistically sound marine monitoring network to support 

the implementation of Article 11 (coordinated monitoring programmes) of the EU Marine Strategy Framework 
Directive (MSFD) in Bulgaria for the period 2014-2018. It is known that the existing monitoring is insufficient to 
meet the requirements of MSFD. A statistically sound sampling strategy is needed to provide adequate data for 
environmental status assessment. The first step in order to build a marine monitoring network is to develop an 
ecological niche model (ENM) of each ecosystem of the region.  

Because of the nature of the available field data, a presence-only ENM was selected and Maxent 
modelling tool was chosen. A Maxent model of Cystoseira barbata (brown algae) was developed and instructions 
are provided in order to develop an ENM for the rest of the ecosystems. The environment predictor variables used 
to develop the Maxent model are existing monitoring information combined with satellite-derived information. 
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Резюме: Тази разработка е част от усилията да се създаде статистически стабилна морска 

мониторингова мрежа, за да се подкрепи прилагането на член 11(координирани мониторингови 
програми) от Европейската Рамкова директива за морска стратегия (РДМС) в България за периода 
2014-2018. Съществуващият мониторинг е недостатъчен за постигане на изискванията на РДМС. 
Статистически стабилна стратегия за пробонабиране е необходима, която да предостави 
достатъчно данни за оценка на състояние на околната среда. Първата стъпка при изграждане на 
морска мониторингова мрежа е разработката на модел на екологичната ниша (МЕН) за всяка 
екосистема в района.  

Моделът Maxent, който е „presence-only”, бе избран поради натурата на достъпните полеви 
данни. За Cystoseira barbata (вид кафяви водорасли) де изработен Maxent модел.  Предоставени са 
инструкции за изработване на МЕН за останалите видове от екосистемите. Променливите, които 
определят околната среда използвани в Maxent модела, са съществуващи мониторингови данни 
комбинирани със спътникови данни 

 
 
Introduction 

 

This study is the first step in order to develop a monitoring network of the Bulgarian Black Sea 
by modelling the spatial distribution of the different ecosystems (Amorim et al. 2014, Fyhr et al. 2013). 
Existing monitoring information will be combined with satellite-derived information to enable the design 
of statistically sound species distribution of the ecosystems using GIS tools.  

This study focuses on modelling the ecological niche of Cystoseira barbata 
(macrophytobenthos species) along the Bulgarian Black Sea coast using Maxent tool and gives 
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practical steps in order to perform a Maxent model for the rest of the identified ecosystems. The 
present report is a summary of this study that could be downloaded from www.academia.edu. 

 
Methodology 
 

In the literature there is sometimes confusion between species distribution model (SDM) and 
ecological niche model (ENM) (Anderson 2012), however it is important question for the interpretation 
of the results (Araujo and Guisan 2006). In this study the ENM is considered as described by 
Anderson 2012, because only the suitable conditions (abiotically) will be modeled.   
 Modelling techniques are especially useful when there is a lack of biological surveys, as is the 
case in the Black sea. While ENM cannot replace the actual monitoring, its predictions can be used to 
construct effective marine monitoring strategies for impact and ecological status assessments needed 
for the implementation of ecosystem-oriented management regulations such as the European Marine 
Strategy Framework Directive (Fyhr et al. 2013, Reiss et al. 2014).  
 In order to establish the best sample sites for the monitoring program the species ecological 
niche should be estimated. Therefore a correlative ENM will be developed (Amorim et al. 2014, 
Stohlgren et al. 2011). Correlative ENM are empirical models relating field observations (sampling 
data) to environmental predictor variables, based on statistically or theoretically derived response 
surfaces (Guisan A. and Thuiller W. 2005). Therefore the quality of the input data is of course of great 
importance for the model (Lozier et al. 2009, Soberon and Peterson 2004), as Pearson, 2009 states: 
“Garbage in, garbage out”. In our case this applies for the sampling data and the environment data.  

There are two main groups of ENM that are divided by the type of data they use: presence-
absence and present-only data (Brotons et al. 2004). The available data for seabed habitats in the 
Bulgarian part of the Black sea is a presence-only data. Therefore only those types of ENM will be 
considered. Another specificity of the available data is that the sample size is very small. For example 
there are 20 sampling locations for Cystoseira barbata in 2012 monitoring.  

The Maximum Entropy model was chosen as the most appropriate, considering the specificity 
of the available data and its predictive capabilities even for small sample size (Anderson and 
Gonzalez 2011, Magris and Déstro 2010, Meißner et al. 2014, Merow et al. 2013, Reiss et al. 2011, 
Stockwell and Peterson 2002, Wisz et al. 2008) and Maxent v3.3.3.3k software (Phillips et al. 2006) 
was used.  

Maxent relies on an unbiased data, however our data is highly biased therefore special care 
was taken in order to limit the effect of the sampling bias (Barnes et al. 2014, Elith et al. 2010, 
Fourcade et al. 2014, Kramer et al. 2013, Phillips et al. 2009, Syfert et al. 2013). The split correction 
was used when creating the bias file, in the sense that for the strip 0-3m a Gaussian function was 
applied and for the strip 3-end of the distribution area of the species a value of almost 0 density was 
applied.  

The choice of the environment predictor variables is a very important step in modelling species 
ecological niche because those models use correlative approaches that use the environmental 
variables to explain patterns of species ecological niche (Reiss et al. 2011). Maintaining a small 
number of predictor variables, when having small sampling size is a sound strategy (Warren et al. 
2014). Along with substrate characteristics and wave regime the environment predictor variables from 
remote sensing in Table 1 were used. 

 
 Table 1. Products from GlobColor (www.globcolor.info) used in the study 

 

Environmental predictor variables 
from remote sensing 

Product from ACRI-ST 
GlobColour Team 2014 

Remarks 

Total suspended matter concentration TSM Chosen because validated for 
water type II 

The Secchi Disk depth  ZSD-DORON Chosen because validated for 
water type II 

Chlorophyll-a concentration CHL-2 Chosen because validated for 
water type II 

Photosynthetically Available Radiation PAR 
 

 

 
Another important aspect of a model is the spatial extend of the study area because the model 

performance relies on it (Anderson & Raza 2010, Barbet-Massin et al. 2012, Barve et al. 2011). The 
study area should be the geographical area accessible to the specie over given time period (Fourcade 
et al. 2014, Anderson & Raza, 2010). After discussion with Bulgarian macrophytobenthos experts 
(Elitza HINEVA from Institute of Oceanology Varna and Dimitar BEROV from the Institute of 
Biodiversity and Ecosystem Research at the Bulgarian Academy of Sciences in Sofia), it was agreed 

http://www.globcolor.info/
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that the most probable habitat distribution of Cystoseira barbata along the Bulgarian Black Sea coast 
is between 0 and 15m water depth. 

With different scale and resolutions of the data, different patterns are visible (Austin 2007, 
Guisan and Thuiller 2005, Haegeman and Etienne 2010, Pearson and Dawson 2003, Pearson et al. 
2004), it is why a great care was taken in adjusting the right spatial scale for the application. On one 
hand, the samples were taken from a square of 15m X 15m and their exact location is unknown. 
Therefore a coarser resolution that 15m X 15m would better take into account this uncertainly. On the 
other hand the substrate is the predictor variable that is the most important and the resolution should 
be fine enough to distinguish correctly the hard substrate. A resolution of about 50m correctly 
represents the substrate. On the third hand the study area for each species is a narrow strip of less 
than 2km wide along the Bulgarian Black Sea coast and is less than 400km long. Therefore a spatial 
resolution of about 50m per cell size was chosen for all the variables in the Maxent model.  

The calibration and selection of the suitable model is done following Scheglovitova and 
Anderson (2013) and Pearson et al. 2007 for small sampling size. The model was run with different 
types of features and regularization and optimising first the omission rate and then the AUC. The 
lowest presence threshold rule (Pearson et al. 2007) or the equivalent minimum training presence 
threshold (in Maxent) was used in order to determine if a test sample is within or out of the predicted 
area. Because of the small sample size the chosen threshold represents a conservative rule 
preventing to overestimate the area suitable for the species. Therefore the omission rate is the 
number of times a test sample is outside of the predicted area, the lower the omission rate the better. 
The types of feature for which the model was tested are L (linear), Q (Quadratic) and H (Hinge) 
following Philipps and Dudik 2008 recommendations because of the sample size of 20. Using complex 
features increase the complexity of the model and could lead to an overfitting. The following features 
or group of features will be used for the test: L, Q (LQ and QH are the same as Q), H (LH is the same 
as H), LQH. Regularization of the other hand gives more or less tolerance in the selected variable 
value and therefore smaller regularization value will probably result in more restricted predictions and 
larger regularisation values in less discriminating predictions. The regularization multipliers 0.25, 0.5, 
0.75, 1, 1.25, 1.50, 1.75, 2 were used. 

This study utilise two tests to evaluate the model: (i) Area Under the Receiver Operating 
Characteristic Curve (AUC) (ii) test for significance of the results. An AUC value of 1 is considered a 
perfect prediction and a value of 0.5 or less is consider a prediction no better than random. In other 
words a model with AUC = 0.89 ranks the suitability of the site correctly 89% of the time. The “leave-
one-out” approach for model evaluation was applied as described by Pearson et al. 2007. 

 
Results 
 

The tests with lower omission rate are the tests for every tested feature class with the regularization 
multiplier of 1.75 and 2. For each feature class, higher regularization multipliers correspond to lower 
omission, which correspond to the results from Scheglovitova and Anderson (2013). The tests with the 
regularization multiplier 1.75 were selected as optimal settings because of the downscale resampling 
of the remote sensing data from 1000m to 50m spatial resolution. Therefore more value tolerance for 
those variables is not necessary. 

For the tests with lower omission rate, an average AUC was calculated from the 20 “leave-
one-out” runs of the model, results in Table 2. For each model a P-value was computer with the tool 
proposed by Pearson et al. 2007 in their Appendix. All the models are statistically significant (P-
value<0.05). 

 
          Table 2. AUC and P-value for the tests with the lowest omission rate 
 

Test    AUC mean test P-value 

Test H, 1.75 0,8426 0,000019 

Test LQH, 1.75 0,84885 0,000027 

Test Q, 1.75 0,84835 0,000027 

Test L, 1.75 0,8303 0,000015 
 
Conclusions 
 

The calibration of the Maxent model shows 4 models with similar performances, see Table 2. 
Although it is still under consideration which of those models to choose, the less complex model was 
selected (L1.75, Linear feature and regularization multiplier 1.75). Only 3 out of the 6 variables 
contribute to the model (substrate, waves, chlorophyll-a). 
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The proposed Cystoseira barbata ecological niche as an input for modelling the monitoring network is 
in Figure 1.   

 
Fig. 1. Proposed Cystoseira barbata ecological niche as an input for modelling the monitoring network 
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